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a b s t r a c t

In most papers establishing consistency for learning algorithms it is assumed that the
observations used for training are realizations of an i.i.d. process. In this paper we go far
beyond this classical framework by showing that support vector machines (SVMs) only
require that the data-generating process satisfies a certain law of large numbers. We then
consider the learnability of SVMs for α-mixing (not necessarily stationary) processes for
both classification and regression, where for the latter we explicitly allow unbounded
noise.
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1. Introduction

In recent years Support Vector Machines (SVMs) have become one of the most widely used algorithms for classification
and regression problems. Besides their good performance in practical applications they also enjoy a good theoretical
justification in terms of both universal consistency (see [1–4]) and learning rates (see [5–9]) if the training samples come
from an i.i.d. process. However, often this i.i.d. assumption cannot be strictly justified in real-world problems. For example,
many machine learning applications such as market prediction, system diagnosis, and speech recognition are inherently
temporal in nature, and consequently not i.i.d. processes. Moreover, samples are often gathered from different sources
and hence it seems unlikely that they are identically distributed. Although SVMs have no theoretical justification in such
non-i.i.d. scenarios they are often applied successfully. One of the goals of this work is explain this success by establishing
consistency results for SVMs under somewhat minimal assumptions on the data-generating process. Namely, we show
that for any data-generating process that satisfies certain laws of large numbers there exists a sequence of regularization
parameters such that the corresponding SVM is consistent. By general negative results (see [10]) on universal consistency
for stationary ergodic processes this sequence of regularization parameters must depend on the stochastic properties of
the data-generating process and cannot be adaptively chosen. However, we show that if the process satisfies certain mixing
properties such as polynomially decayingα-mixing coefficients (see the definitions in the following sections) then a suitable
regularization sequence can be chosen a priori. In addition, a side effect of our analysis is that it provides consistency for
SVMs using Gaussian kernels even if the common compactness assumption of the input space is violated. Consequently,
our consistency results for α-mixing processes generalize earlier consistency results of [1–3] with respect to both the
compactness assumption on X and the i.i.d. assumption on the data-generating process.
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Relaxations of the independence assumption have been considered for quite a while in both the machine learning and
the statistical literature. For example PAC-learning for stationary β̄-mixing processes has been investigated in [11], and
more recently, consistency of regularized boosting for classification was established for such processes. For a larger class of
processes, namely α-mixing but not necessarily stationary processes, consistency of kernel density estimators was shown
in [12]. For bounded, stationary processes with exponentially decaying ᾱ-mixing coefficients a consistent method for one-
step-ahead prediction (also known as “static autoregressive forecasting”, see [13]) was presented in [14]. Moreover, for this
prediction problem [15] establishes consistency for a certain structural risk minimization approach under the assumption
that the process is stationary and has polynomially decaying β̄-mixing rates. For further results and references we refer the
reader to [16,17].

Relaxations of the stationarity of the process are less common. In fact, to the best of our knowledge [12] is the only
work which deals with such processes. One of the reasons for this lack of literature may be the fact that for non-identically
distributed observations there is no obvious way to define a reasonable risk functional which resembles the idea of “average
future error”. On the other hand, it seems obvious that learning methods based on a modified empirical risk minimization
procedure require at least that the process satisfies certain laws of large numbers. Interestingly, we will show that for
processes satisfying such laws of large numbers there is always a “limit” distribution which can be used to define a reasonable
risk functional. Moreover, for many interesting classes of processes the existence of such a limit distribution turns out to be
equivalent to a law of large numbers.

The rest of this work is organized as follows: In Section 2 we will define the notions “laws of large numbers” and
“limit” distributions for stochastic processes. We then discuss the relationship between these concepts and consider specific
classes of stochastic processes that satisfy these definitions. We then recall some basic classes of loss functions and define
consistency of learning algorithms for stochastic processes satisfying certain laws of large numbers. Finally, we show that
SVMs can be made consistent for such processes. In Section 3 we then recall various mixing coefficients for stochastic
processes. These coefficient are then used to establish consistency results for SVMs with a priori chosen regularization
sequence. Finally, the proofs of our results can be found in Section 4.

2. Consistency for processes satisfying a law of large numbers

The aim of this section is to show that SVMs can be made consistent whenever the data-generating process satisfies a
certain type of law of large numbers (LLNs). To this end we first recall some notions for stochastic processes and introduce
these laws of large numbers in Section 2.1. In Section 2.2 we then recall some important notions for loss functions and risks.
We also define consistency of learning algorithms for data-generating processes that satisfy a law of large numbers. Finally,
we present and discuss our consistency results for SVMs in Section 2.3.

2.1. Law of large numbers for stochastic processes

In this subsection we mainly introduce laws of large numbers for general, not necessarily stationary stochastic processes.
The concepts we will present seem to be quite natural and elementary, and therefore one would expect that they have
already been introduced elsewhere. Surprisingly, however, we were not able to find any exposition that covers major parts
of the material of this section, and thus we discuss the following notions in some detail.

Let us begin with some notations. Given a measurable space Z we write L0(Z) for the set of all measurable functions
f : Z → R, and L∞(Z) for the set of all bounded measurable functions f : Z → R. Moreover, for a set B ⊂ Z we write 1B

for its indicator function, i.e. 1B : Z → {0, 1} with 1B(z) = 1 if and only if z ∈ B. Let us now assume that we also have a
probability space (Ω,A,µ) and a measurable map T : Ω → Z. Then σ(T) denotes the smallest σ-algebra on Ω for which T is
measurable. Moreover, µT denotes the T-image measure of µ, which is defined by µT(B) := µ(T−1(B)), B ⊂ Z measurable.
In particular, if Z := (Zi)i≥1 is a Z-valued stochastic process on (Ω,A,µ) then µZ denotes the image measure of the map
Z : Ω → ZN. Furthermore, recall that Z is called identically distributed if µZi = µZj for all i, j ≥ 1, and stationary in the
wide sense if µ(Zi1+i,Zi2+i)

= µ(Zi1 ,Zi2 ) for all i1, i2, i ≥ 1. Finally, Z is said to be stationary if µ(Zi1+i,...,Zin+i)
= µ(Zi1 ,...,Zin ) for all

n, i, i1, . . . , in ≥ 1.
As we will see later we are not interested in the data-generating process Z itself, but only in processes of the form

g ◦ Z := (g ◦ Zi)i≥1 for g : Z → Z′ being measurable. In the following we call g ◦ Z an image of the process Z, and Z
itself a hidden process. The following definition introduces laws of large numbers for stochastic processes by considering
real-valued image processes:

Definition 2.1. Let Z be a Z-valued stochastic process on the probability space (Ω,A,µ). We say that Z satisfies the weak
law of large numbers for events (WLLNE) if for all measurable B ⊂ Z there exists a constant cB ∈ R such that for all ε > 0 we
have

lim
n→∞

µ

({
ω ∈ Ω :

∣∣∣∣∣1n
n∑

i=1
1B ◦ Zi(ω)− cB

∣∣∣∣∣ > ε
})
= 0. (1)
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Moreover, we say that Z satisfies the strong law of large numbers for events (SLLNE) if for all measurable B ⊂ Z there exists a
constant cB ∈ R such that for µ-almost all ω ∈ Ω we have

lim
n→∞

1
n

n∑
i=1

1B ◦ Zi(ω) = cB. (2)

It is obvious that Z satisfies the WLLNE if and only if the sequences ( 1
n

∑n
i=1 1B ◦ Zi) converge in probability µ for all

measurable B ⊂ Z. Consequently, the SLLNE implies the WLLNE but in general the converse implication does not hold.
Moreover, if Z satisfies the WLLNE then the constants cB in (1) must obviously satisfy cB ∈ [0, 1] for all measurable B ⊂ Z.
Finally, if Z satisfies the WLLNE or SLLNE then every image g ◦Z also satisfies the WLLNE or SLLNE, respectively.

For i.i.d. processes the map B 7→ cB clearly defines a probability measure on Z. Our next goal is to show that this remains
true for general processes satisfying a WLLNE. To this end we first consider the averages 1

n

∑n
i=1 Eµ1B ◦ Zi of the probabilities

of the event B:

Definition 2.2. We say that a Z-valued stochastic process Z on the probability space (Ω,A,µ) is asymptotically mean
stationary (AMS) if for all measurable B ⊂ Z the following limit exists

P(B) := lim
n→∞

1
n

n∑
i=1
Eµ1B ◦ Zi. (3)

The notion “asymptotically mean stationary” was first introduced for dynamical systems by Grey and Kieffer in [18]. We
are unaware of any work that introduces this notion for general stochastic processes, though a similar idea already appears
as assumption (S1) in [12].

Obviously every image of an AMS process is again AMS. Moreover, identically distributed – and hence stationary –
processes are obviously AMS. In addition, for such processes Z we also have P(B) = µZ1(B) for all measurable B ⊂ Z, and
consequently, (3) defines a probability measure on Z. The following lemma whose proof can be found in Section 4 shows
that the latter observation remains true for general AMS processes.

Lemma 2.3. Let Z be a Z-valued AMS process on the probability space (Ω,A,µ). Then P defined by (3) is a probability measure
on Z. We call P the stationary mean of (Z,µ).

It it is well known that not every stationary process satisfies a (weak, strong) law of large numbers for events.
Consequently, we see that in general AMS processes do not satisfy a law of large numbers. However, the following theorem
proved in Section 4 shows that the converse implication is true. In addition, it shows that the constants cB in (1) define the
stationary mean distribution.

Theorem 2.4. Let Z be a Z-valued stochastic process on the probability space (Ω,A,µ) that satisfies the WLLNE. Then Z is AMS
and the stationary mean P of (Z,µ) satisfies

lim
n→∞

µ

({
ω ∈ Ω :

∣∣∣∣∣1n
n∑

i=1
1B ◦ Zi(ω)− P(B)

∣∣∣∣∣ > ε
})
= 0 (4)

for all measurable B ⊂ Z and all ε > 0. Moreover, if Z satisfies the SLLNE then µ-almost surely

lim
n→0

1
n

n∑
i=1

1B ◦ Zi = P(B).

Eq. (4) shows that the stationary mean P describes with high probability our average observations from Z. Given a loss
function L (see Section 2.2 for definitions) it seems therefore natural to approximate the empirical L-risk of a function by
the corresponding L-risk defined by P.1 However, in order to make this ansatz rigorous we have to extend (4) to function
classes larger than the set of indicator functions. We begin with the following result that shows that a law of large numbers
for events implies a corresponding law of large numbers of bounded functions:

Lemma 2.5. Let Z be a Z-valued stochastic process on the probability space (Ω,A,µ) that satisfies the WLLNE. Furthermore, let
P be the asymptotic mean of (Z,µ). Then for all f ∈ L∞(Z) we have

1 For i.i.d. observations one typically argues the other way around. However, for general stochastic processes the learning goal should be to minimize the
future average loss. This loss is an empirical L-risk which can be approximated by the L-risk defined by P. In the training phase of empirical risk minimizers
the latter L-risk is then approximated by the empirical L-risk of the already observed training samples. In this way P and the corresponding convergence
rates in (3) and (4) tell us how well we can generalize from the past to the future.
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EPf = lim
n→∞

1
n

n∑
i=1

f ◦ Zi (5)

in probability µ, and

EPf = lim
n→∞

1
n

n∑
i=1
Eµf ◦ Zi. (6)

Moreover, if Z actually satisfies the SLLNE then the convergence in (5) holds µ-almost surely.

For classification problems we usually can restrict our considerations to bounded functions, and hence Lemma 2.5 is all
what we need. However, for regression problems with unbounded noise we have to consider integrable functions, instead.
The following definition serves this purpose:

Definition 2.6. Let Z be a Z-valued AMS process on the probability space (Ω,A,µ) and P its asymptotic mean. We say that
Z satisfies the weak law of large numbers (WLLN) if

lim
n→∞

µ

({
ω ∈ Ω :

∣∣∣∣∣1n
n∑

i=1
f ◦ Zi(ω)− EPf

∣∣∣∣∣ > ε
})
= 0 (7)

for all f ∈ L1(P) and all ε > 0. Moreover, we say that Z satisfies the strong law of large numbers (SLLN) if for all f ∈ L1(P) we
µ-almost surely have

lim
n→∞

1
n

n∑
i=1

f ◦ Zi = EPf . (8)

Let us end this discussion by recalling some examples of types of stochastic processes that satisfy the above definitions.

Example 2.7 (Independent Processes). Obviously, i.i.d. processes satisfy the SLLN and this remains true for certain types of
martingales. Moreover, by [19, Theorem 2.7.1] we see that a stochastic process Z for which all images 1B◦Z are independent
the SLLNE is satisfied if and only if Z is AMS. Analogously, by Markov’s inequality it is not hard to see that a stochastic process
Z whose coordinates Zi are pairwise independent satisfies the WLLNE if and only if Z is AMS.

Example 2.8 (Ergodic Processes). Recall that for invariant dynamical systems Birkhoff’s theorem states that ergodicity is
equivalent to the SLLN or SLLNE, and from this one can conclude that every stationary ergodic process Z satisfies the SLLN.
In particular, if Z is an invariant ergodic dynamical system on (Rd,µ) and E is an Rd-valued i.i.d. process then the process
Z+E is stationary and ergodic and hence satisfies the SLLN. More information on ergodicity can be found in e.g. the books [20,
21].

Example 2.9 (Markov Chains). Stationary homogeneous Markov chains satisfying the “Doeblin condition” (see e.g. [22,
p. 197] or [23, p. 156]) are known to satisfy the SLLN (see [22, p. 219]). Moreover, simple assumptions ensuring Doeblin’s
condition can be found in [22, p. 192f], and for conditions similar to Doeblin’s condition we refer the reader to [23] and the
references therein. In addition, the SLLN still holds for some non-homogeneous, not identically distributed Markov chains
(see [19, p. 129–135]). Finally, Markov chains on countable sets satisfy the SLLNE if they are irreducible, positive recurrent,
and homogeneous (see e.g. [24, Theorem 1.10.2]).

2.2. Loss functions, risks, and consistency

In this section we recall some basic notions for loss functions and their associated risks. We then introduce consistency
notions for learning algorithms for stochastic processes satisfying a law of large numbers.

In the following X is always a measurable space if not mentioned otherwise and Y ⊂ R is always a closed subset. Moreover,
metric spaces are always equipped with the Borel σ-algebra, and products of measurable spaces are always equipped with
the corresponding product σ-algebra. Finally, Lp(µ) stands for the standard space of p-integrable functions with respect to
the measure µ on X.

Definition 2.10. A function L : X × Y × R → [0,∞] is called a loss function if it is measurable. In this case we say that L
convex (or continuous) if L(x, y, . ) : R → [0,∞] is convex (or continuous) for all x ∈ X, y ∈ Y. Moreover, for a probability
measure P on X × Y and an f ∈ L0(X) the L-risk of f is defined by

RL,P(f ) :=
∫
X×Y

L (x, y, f (x)) dP(x, y) =
∫
X

∫
Y
L (x, y, f (x)) dP(y|x) dPX(x).

Finally, the Bayes L-risk is R∗L,P := inf{RL,P(f ) : f ∈ L0(X)}.
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Note that the integral defining the L-risk always exists since L is non-negative and measurable. In addition it is obvious
that the risk of a convex loss is convex on L0(X). However, in general the risk of a continuous loss is not continuous. In order
to ensure this continuity and several other, more sophisticated properties we need the following definition:

Definition 2.11. A loss function L : X× Y ×R→ [0,∞] is called a Nemitski loss function if there exist a measurable function
b : X × Y → [0,∞) and an increasing function h : [0,∞)→ [0,∞) with

L(x, y, t) ≤ b(x, y)+ h (|t|) , (x, y, t) ∈ X × Y × R. (9)

Furthermore, we say that L is a Nemitski loss of order p ∈ (0,∞), if there exists a constant c > 0 with h(t) = c tp for all t ≥ 0.
Finally, if P is a distribution on X × Y with b ∈ L1(P) we say that L is a P-integrable Nemitski loss.

Note that P-integrable Nemitski loss functions L satisfy RL,P(f ) < ∞ for all f ∈ L∞(PX), and consequently we also have
RL,P(0) <∞ and R∗L,P <∞.

For our further investigations we also need the following additional properties which are satisfied by basically all
commonly used loss functions:

Definition 2.12. Let L : X × Y × R→ [0,∞) be a loss function. We say that L is:

(i) locally bounded if for all bounded A ⊂ R the restriction L|X×Y×A of L is a bounded function.
(ii) locally Lipschitz continuous if for all a > 0 we have

|L|a,1 := sup
t,t′∈[−a,a]

t 6=t′

sup
x∈X
y∈Y

∣∣L(x, y, t)− L(x, y, t′)
∣∣

|t − t′|
<∞. (10)

(iii) Lipschitz continuous if we have |L|1 := supa>0 |L|a,1 <∞.

Note that if Y ⊂ R is a finite subset and L : Y×R→ [0,∞) is a convex loss function then L is a locally Lipschitz continuous
loss function. Moreover, a locally Lipschitz continuous loss function L is a Nemitski loss since (10) yields

L(x, y, t) ≤ L(x, y, 0)+ |L||t|,1|t|, (x, y, t) ∈ X × Y × R. (11)

In particular, a locally Lipschitz continuous loss L is a P-integrable Nemitski loss if and only if RL,P(0) <∞. Moreover, if L is
Lipschitz continuous then L is a Nemitski loss of order 1.

The following examples recall that (locally) Lipschitz continuous losses are often used in learning algorithms for
classification and regression problems:

Example 2.13. A loss L : Y × R → [0,∞) of the form L(y, t) = ϕ(yt) for a suitable function ϕ : R → [0,∞) and all
y ∈ Y := {−1, 1} and t ∈ R, is called margin-based. Recall that margin-based losses such as the (squared) hinge loss, the
AdaBoost loss, the logistic loss and the least squares loss are used in many classification algorithms. Obviously, L is convex,
continuous, or (locally) Lipschitz continuous if and only if ϕ is. In addition, convexity of L implies local Lipschitz continuity
of L. Moreover, L is always a P-integrable Nemitski loss since we have

L(y, t) ≤ max{ϕ(−t),ϕ(t)} (12)

for all y ∈ Y and all t ∈ R. In particular, this estimate shows that every convex margin-based loss is locally bounded.
Moreover, from (12) we can easily derive a characterization for L being a P-integrable Nemitski loss of order p.

Example 2.14. A loss L : Y × R → [0,∞) of the form L(y, t) = ψ(y − t) for a suitable function ψ : R → [0,∞) and all
y ∈ Y := R and t ∈ R, is called distance-based. Distance-based losses such as the least squares loss, Huber’s insensitive loss,
the logistic loss, or the ε-insensitive loss are usually used for regression. Moreover, these examples illustrate that in general
distance-based loss functions are neither locally bounded nor locally Lipschitz continuous. On the other hand, it is easy to
see that L is convex, continuous, or Lipschitz continuous if and only if ψ is. Let us assume that L is a convex loss, i.e. ψ is
convex. Then ψ is locally Lipschitz continuous and hence V(r) := |ψ|[−r,r]|1, where |ψ|[−r,r]|1 denotes the Lipschitz constant
of the function ψ|[−r,r] : [−r, r] → [0,∞) is defined for all r ≥ 0. Moreover, [4, Lemma 4] shows

V(r) ≤
2
r
‖ψ|[−2r,2r]‖∞ ≤ 4V(2r), r > 0. (13)

Let us say that L is of upper growth p ∈ [1,∞) if there is a c > 0 with

ψ(r) ≤ c (|r|p + 1) , r ∈ R.

Analogously, L is said to be of lower growth p ∈ [1,∞) if there is a c > 0 with

ψ(r) ≥ c (|r|p − 1) , r ∈ R.
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Recall that most of the commonly used distance-based loss functions including the above examples are of the same upper
and lower growth type. It is obvious that L is of upper growth type 1 if it is Lipschitz continuous, and if L is convex the
converse implication also holds. Moreover, non-trivial convex L are always of lower growth type 1. In addition, a distance-
based loss function of upper growth type p ∈ [1,∞) is a Nemitski loss of order p, and if the distribution P satisfies the
moment condition

|P|p :=
(
E(x,y)∼P|y|

p)1/p
:=

(∫
X×R
|y|p dP(x, y)

)1/p
<∞ (14)

it is also P-integrable.

If our observations are realizations of a sequence Z of random variables (Xi, Yi) : Ω → X × Y satisfying a law of large
numbers then the following lemma proved in Section 4 shows that the risk with respect to the asymptotic mean distribution
P actually describes the average future loss.

Lemma 2.15. Let (Ω,A,µ) be a probability space, X be a measurable space, Y ⊂ R be a closed subset, and Z := ((Xi, Yi))i≥1
be a X × Y-valued stochastic process on Ω satisfying the WLLNE. Furthermore, let P be the asymptotic mean of (Z,µ) and
L : X × Y × R→ [0,∞) be a loss function. If L is locally bounded then for all f ∈ L∞(X) and all n0 ≥ 0 we have

RL,P(f ) = lim
n→∞

1
n− n0

n∑
i=n0+1

L (Xi, Yi, f (Xi)) , (15)

where the limit is with respect to the convergence in probability µ. Moreover, if Z actually satisfies the SLLNE then (15) holds
µ-almost surely. Finally, the same conclusions hold if L is a P-integrable Nemitski loss and Z satisfies the WLLN or SLLN.

With the help of the above lemma we can now introduce some concepts describing the asymptotic learning ability of
learning algorithms. To this end recall that a method L that provides to every training set T := ((x1, y1), . . . , (xn, yn)) ∈
(X × Y)n a (measurable) function fT : X → R is called a learning method. The following definition introduces an asymptotic
way to describe whether a learning method can learn from samples:

Definition 2.16. Let (Ω,A,µ) be a probability space, X be a measurable space, Y ⊂ R be a closed subset, and Z :=
((Xi, Yi))i≥1 be a X × Y-valued stochastic process on Ω satisfying the WLLNE. Furthermore, let P be the asymptotic mean
of (Z,µ) and L : X × Y × R→ [0,∞) be a loss function. We say that a learning method L is L-consistent for Z if

lim
n→∞

RL,P(fTn) = R∗L,P (16)

holds in probability µ, where Tn := ((X1, Y1), . . . , (Xn, Yn)) and R∗L,P is the Bayes risk defined in Definition 2.10. Moreover,
we say that L is strongly L-consistent for Z if (16) holds µ-almost surely.

2.3. Consistency of SVMs

In this subsection we present some results showing that support vector machines (SVMs) can learn whenever the data-
generating process satisfies a law of large numbers.

Let us begin by recalling the definition of SVMs. To this end let L : X × Y × R → [0,∞) be a convex loss function
and H be a reproducing kernel Hilbert space (RKHS) over X (see e.g. [25]). Then for all λ > 0 and all observations
T := ((x1, y1), . . . , (xn, yn)) ∈ X × Y there exists exactly one element fT,λ ∈ H such that

fT,λ ∈ arg min
f∈H

λ‖f‖2
H +

1
n

n∑
i=1

L (xi, yi, f (xi)) . (17)

Given a null-sequence (λn) of strictly positive real numbers we call the learning method that provides to every training set
T ∈ (X × Y)n the decision function fT,λn an (λn)-SVM based on H and L. For more information on SVMs we refer the reader to
[26,27].

Moreover, given a distribution P on X × Y we say that the RKHS H is (L, P)-rich if we have

R∗L,P,H := inf
f∈H

RL,P(f ) = R∗L,P,

i.e. if the Bayes risk can be approximated by functions from H. Note that the condition R∗L,P,H = R∗L,P is satisfied (see [28])
whenever, the kernel of H is universal in the sense of [29], i.e. X is a compact metric space and H is dense in the space C(X) of
continuous functions. Less restrictive assumptions on H and X have been recently found in [28]. In particular, it was shown
in [28] that the RKHSs Hσ , σ > 0, of the Gaussian RBF kernels

kσ(x, x
′) := exp

(
−σ2
‖x− x′‖2

2

)
, x, x′ ∈ Rd

are (L, P)-rich for all distributions P on Rd
× Y and all continuous, P-integrable Nemitski losses L of order p ∈ [1,∞). Finally,

one can also find some necessary and sufficient conditions for (L, P)-richness on countable spaces X in [28].
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In order to present our first main result let us recall that a Polish space is a separable topological space whose topology
can be described by a complete metric. It is well known that e.g. closed and open subset of Rd and compact metric spaces
are Polish.

Now our first theorem essentially shows that there exists a consistent SVM for every process that takes values in a Polish
space and that satisfies a law of large numbers for events.

Theorem 2.17. Let X be a Polish space, Y ⊂ R be a closed subset and L : X × Y × R → [0,∞) be a convex, locally Lipschitz
continuous, and locally bounded loss function. Moreover, let (Ω,A,µ) be a probability space, Z := ((Xi, Yi))i≥1 be an X × Y-
valued stochastic process on Ω satisfying the WLLNE, and P be the asymptotic mean of (Z,µ). Finally, let H be an (L, P)-rich RKHS
over X with bounded and continuous kernel. Then there exists a null-sequence (λn) of strictly positive real numbers such that the
(λn)-SVM based on H and L is L-consistent for Z.

In addition, if Z satisfies the SLLNE then (λn) can be chosen such that the (λn)-SVM is strongly L-consistent for Z.

We have seen in Example 2.14 that distance-based loss functions are in general are locally bounded. Nonetheless the
following theorem establishes consistency for such losses.

Theorem 2.18. Let X be a Polish space, Y ⊂ R be closed and L : Y×R→ [0,∞) be a convex, distance-based loss function of upper
growth-type p ∈ [1,∞). Moreover, let (Ω,A,µ) be a probability space, Z := ((Xi, Yi))i≥1 be an X × Y-valued stochastic process
on Ω satisfying the WLLN, and P be the asymptotic mean of (Z,µ). We assume that |P|p < ∞. Finally, let H be the (L, P)-rich
RKHS of a bounded and continuous kernel on X. Then there exists a null-sequence (λn) of strictly positive real numbers such that
the (λn)-SVM based on H and L is L-consistent for Z.

In addition, if Z satisfies the SLLN then (λn) can be chosen such that the (λn)-SVM is strongly L-consistent for Z.

The techniques used in the proofs of Theorems 2.17 and 2.18 are based on a (hidden) skeleton argument in the proof of
Lemma 4.4. A more general though standard skeleton argument can be used to derive results similar to Theorems 2.17 and
2.18 for other empirical risk minimization methods using hypothesis sets with reasonably controllable complexity. Due to
space constraints we omit the details.

Let us now assume for a moment that X is a subset ofRd, L is a loss function in the sense of either Theorem 2.17 or 2.18, and
H is the RKHS of a Gaussian RBF kernel. Then the above theorems together with the richness results from [28] show that for all
data-generating processes Z satisfying a law of large numbers there exist suitable regularization sequences (λn) that allows
us to build a consistent SVM. However, the sequences of Theorem 2.17 or 2.18 depend on Z, and consequently, it would
be desirable to have either a universal sequence (λn), i.e. a sequence that guarantees consistency for all Z, or a consistent
method that finds suitable values for λ from the observations. Unfortunately, the following theorem due to Nobel, [10],
together with Birkhoff’s ergodic theorem shows that neither of these alternatives is possible2:

Theorem 2.19. There is no learning method which is Llsquares-consistent for all stationary ergodic processes (Xi, Yi) with values in
[0, 1] × [0, 1], where Llsquares denotes the usual least square loss Llsquares(y, t) := (y− t)2, y, t ∈ R. Moreover, there is no learning
method which is Lclass-consistent for all stationary ergodic processes (Xi, Yi) with values in [0, 1] × {−1, 1}, where Lclass denotes
the classification loss Lclass(y, t) := 1(−∞,0](y sign t), y = ±1, t ∈ R.

Roughly speaking the impossibility of finding a universal sequence (λn) is related to the fact that there is no uniform
convergence speed in the LLNs for general processes. More precisely, if Z := ((Xi, Yi))i≥1 is a stochastic process which
satisfies a law of large numbers then for all ε > 0, n ≥ 1, and all suitable functions f : X× Y → R there exists a δ(ε, f , n) > 0
with

µ

({
ω ∈ Ω :

∣∣∣∣∣1n
n∑

i=1
f ◦ (Xi, Yi)(ω)− EPf

∣∣∣∣∣ > ε
})
≤ δ(ε, f , n) (18)

and limn→∞ δ(ε, f , n) = 0. Now, the proofs of Theorems 2.17 and 2.18 (essentially) show that we can determine a sequence
(λn) whenever we know such δ(ε, f , n) for all ε > 0, n ≥ 1, and a suitably large class of functions f . However, since there
exists no universal sequence (λn) by Theorem 2.19 we consequently see that there exists no values δ(ε, f , n) such that (18)
holds for all (stationary) processes satisfying a law of large numbers.

This discussion shows that in order to build consistent SVMs for interesting classes of processes one has to find
quantitative versions of laws of large numbers. In the following section we will present a simple yet powerful method for
establishing such versions for mixing processes.

2 Recall that binary classification is the “easiest” non-parametric learning problem in the sense that negative results for this learning problem can
typically be translated into negative results for almost all learning problems defined by loss functions (cf. p. 118f in [30] for some examples in this direction
and the proof of the below theorem in [10] for the least squares loss).
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3. Consistency for mixing processes

In this section we derive consistency results for SVMs under the assumption that the data-generating process satisfies
certain mixing conditions. These mixing conditions generally quantify how much a process fails to be independent. In the
first subsection we recall some commonly used mixing conditions. In the second subsection we then present our consistency
results and compare them with known consistency results for other learning algorithms.

3.1. Mixing coefficients for processes

In this subsection we recall some standard mixing coefficients and their basic properties (see e.g. [31,17] for thorough
treatment). To this end let Ω be a set, A and B be two σ-algebras on Ω , and µ be a probability measure on σ(A ∪ B).
Furthermore, let H be a Hilbert space and Lp(A,µ,H) be the space of all A-measurable H-valued functions that are p-
integrable with respect to µ. Using the convention 0

0 := 0 we define the following mixing coefficients for the pair (A,B):

α(A,B,µ) := sup
A∈A
B∈B

|µ(A ∩ B)− µ(A)µ(B)|

ϕ(A,B,µ) := sup
A∈A
B∈B

∣∣∣∣µ(A ∩ B)− µ(A)µ(B)

µ(A)

∣∣∣∣
ϕsym(A,B,µ) :=

√
ϕ(A,B,µ) · ϕ(B,A,µ)

RH
p (A,B,µ) := sup

f∈Lp(A,µ,H)

g∈Lp(B,µ,H)

∣∣∣∣∣Eµ〈f , g〉 − 〈Eµf ,Eµg〉‖f‖p ‖g‖p

∣∣∣∣∣ , p ∈ [2,∞].

It is obvious from the definitions that all mixing coefficients equal 0 if A and B are independent, and besides ϕ they are also
symmetric in A and B. Moreover, we have 2α(A,B,µ) ≤ ϕ(A,B,µ) and 4α(A,B,µ) ≤ RR

p (A,B,µ) ≤ 2ϕsym(A,B,µ)
for all p ∈ [2,∞], see [31, Section 1] and the references therein. Furthermore, [32, Theorem 4.1] shows that for all p ∈ [2,∞]
there exists a constant cp > 0 such that for all Hilbert spaces H we have

RR
p (A,B,µ) ≤ RH

p (A,B,µ) ≤ cp R
R
p (A,B,µ). (19)

Note that for p = 2 we actually have cp = 1 and for p = ∞ we may choose the famous Grothendieck constant
(see the proof of Lemma 2.2 in [33]). Moreover, it is obvious from the definition that RH

p (A,B,µ) is decreasing in p, i.e.
RH
p (A,B,µ) ≤ RH

q (A,B,µ) for q ≤ p. Finally, Theorem 4.13 in [34] gives the highly non-trivial relation

RR
p (A,B,µ) ≤ 2πα1− 2

p (A,B,µ)ϕ
2
p
sym(A,B,µ), p ∈ [2,∞]. (20)

Let us now consider mixing coefficients and corresponding mixing notions for stochastic processes:

Definition 3.1. Let Z be a Z-valued stochastic process on the probability space (Ω,A,µ) and let ξ be one of the above mixing
coefficients. For i, j ≥ 1 we define the ξ-bi-mixing coefficient of Z by

ξ(Z,µ, i, j) := ξ
(
σ(Zi),σ(Zj),µ

)
.

Furthermore, for n ≥ 1 the ξ-mixing and ξ̄-mixing coefficients of Z are defined by

ξ(Z,µ, n) := sup
i≥1
ξ(Z,µ, i, i+ n)

ξ̄(Z,µ, n) := sup
i≥1
ξ (σ(Z1, . . . , Zi),σ(Zi+n, Zi+1+n, . . .),µ) .

It is immediately clear that ξ(Z,µ, n) ≤ ξ̄(Z,µ, n). This trivial observation is interesting since the literature typically
deals with ξ̄(Z,µ, n), whereas the consistency results which we will present in the following subsection only require
bounds on ξ(Z,µ, n) or ξ(Z,µ, i, j). Finally, recall that for stationary, homogeneous Markov chains Z we actually have
ξ(Z,µ, n) = ξ̄(Z,µ, n) if ξ 6= ϕsym.

In the following we say that the process Z is ξ-mixing if limn→∞ ξ(Z,µ, n) = 0. Moreover, Z is called weakly ξ-mixing
if limn→∞

1
n

∑n
k=1 ξ(Z,µ, k) = 0. In addition, we define analogous mixing notions for ξ̄. Finally, Z is said to be weakly ξ-bi-

mixing if

lim
n→∞

1
n2

n∑
i=1

i−1∑
j=1
ξ(Z,µ, i, j) = 0. (21)

Obviously, every ξ-mixing process is weakly ξ-mixing, and since a simple induction over n ∈ N shows
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n∑
i=1

i−1∑
j=1
ξ(Z,µ, i, j) =

n−1∑
k=1

n−k∑
m=1

ξ(Z,µ,m+ k,m), n ≥ 1,

we also see that every weakly ξ-mixing process is weakly ξ-bi-mixing. Moreover, if the process Z is stationary in the wide
sense then an elementary proof shows that ξ(Z,µ, i, j) = ξ(Z,µ, i+k, j+k). Since this implies ξ(Z,µ, i, j) = ξ(Z,µ, i−j+1)
for i ≥ j ≥ 1 we then find

n∑
i=1

i−1∑
j=1
ξ(Z,µ, i, j) =

n−1∑
k=1

n−k∑
m=1

ξ(Z,µ,m+ k,m) =
n−1∑
k=1

(n− k) ξ(Z,µ, k+ 1). (22)

Consequently, every stationary weakly ξ-bi-mixing process is actually weakly ξ-mixing.
Some information on mixing conditions for stationary processes and their relation to mixing in the ergodic sense can be

found in e.g. [31]. Examples of (exponentially or polynomially) ξ̄-mixing processes including certain Markov, ARMA, MA(∞),
and GARCH processes can be found in [35, Sect. 2.6.1] and [31,34,36]. Moreover, mixing properties of Gaussian processes
are considered in [34, Chapter 9]. Finally, [37, Theorem 26.5] together with [34, Proposition 3.18] shows that in general the
ξ̄-mixing rates can be arbitrarily slow. A brief survey of these and other results together with various references is given
in [31], and a thorough and recent treatment can be found in [34,36,37].

Let us finally discuss some laws of large numbers for mixing processes. We begin with the following simple result proved
in Section 4 which shows that asymptotically mean stationary, weakly bi-mixing processes satisfy the WLLNE:

Proposition 3.2. Let Z be a Z-valued weakly α-bi-mixing stochastic process. Then Z is AMS if and only if it satisfies the WLLNE.

Using [19, Theorm 8.2.1] it is easy to see that for ᾱ-mixing processes being AMS is actually equivalent to the SLLNE.
Finally, [38, Cor. 8.2.2] shows that identically distributed processes Z with

∞∑
n=1

√
ϕ̄(Z,µ, 2n) <∞ (23)

satisfy the SLLN. Obviously, (23) is satisfied whenever there are constants c > 0 and α > 2 such that ϕ̄(Z,µ, n) ≤ c (ln n)−α

for all n ≥ 2.

3.2. Consistency of SVMs for mixing processes

In this subsection we establish consistency results for data-generating processes with known upper bounds on the weakly
α-bi-mixing rate. Unlike in the case of general processes satisfying a law of large numbers these new consistency results
give explicit conditions on the regularization sequences guaranteeing consistency.

In order to formulate these results we have to introduce a new quantity. To this end let k be a bounded kernel over some
set X. Then the supremum norm of k is defined by

‖k‖∞ := sup
x∈X

√
k(x, x).

Note that for the Gaussian kernels kσ we have ‖kσ‖∞ = 1.
Now we can present our first consistency result which deals with locally Lipschitz-continuous loss functions:

Theorem 3.3. Let X be a separable metric space, Y ⊂ R be a closed subset and L : X × Y × R → [0,∞) be a convex, locally
Lipschitz continuous loss function with ‖L(., ., 0)‖∞ ≤ c. Moreover, let (Ω,A,µ) be a probability space, Z := ((Xi, Yi))i≥1 be an
X× Y-valued, AMS stochastic process on Ω , and P be the asymptotic mean of (Z,µ). In addition, let H be an (L, P)-rich RKHS over
X with bounded continuous kernel k. We write

Bλ := ‖k‖∞

(
c

λ

)1/2
, λ > 0.

Finally, assume that there are constants C ∈ (0,∞) and α ∈ (0, 1] such that∣∣∣∣∣1n
n∑

i=1
Eµf ◦ Zi − EPf

∣∣∣∣∣ ≤ C‖f‖∞n−α (24)

1
n2

n∑
i=1

i−1∑
j=1
α(Z,µ, i, j) ≤ Cn−α (25)

for all f ∈ L∞(Z) and all n ≥ 1. Then for all null-sequence (λn) of strictly positive real numbers satisfying

|L|4Bλn ,1

λ2
nn
α
→ 0 (26)

the corresponding (λn)-SVM based on H and L is L-consistent for Z.
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The above result is of particular interest for binary classification problems. Indeed, recall that the standard SVM for
classification uses the hinge loss defined by

L(y, t) := max{0, 1− yt}, y ∈ Y := {−1, 1}, t ∈ R.

Obviously, this loss function is convex and Lipschitz continuous with |L|1 = 1 and L(y, 0) = 1 for y ∈ Y. For X := Rd and Hσ
being the RKHS of a Gaussian RBF kernel with fixed width σ we consequently obtain L-consistency for the corresponding
(λn)-SVM whenever λn → 0 and λ2

nn
α
→∞, where α is the exponent satisfying (24) and (25). Since L-consistency implies

binary classification consistency (see e.g. [3,39]) we hence see that the above SVM is classification consistent. Note that this
consistency generalizes earlier consistency results of [1–3] with respect to both the compactness assumption on X and the
i.i.d. assumption on the data-generating process. Finally, in the case of α = 1 the SVMs using the hinge loss L and an (L, P)-
rich RKHS is consistent if λn → 0 and nλ2

n →∞. Since this is exactly the condition ensuring consistency in the i.i.d. case we
see that such an SVM is quite robust against violations of the i.i.d. assumption.

If quantitative approximation properties of H in terms of convergence rates for RL,P(fP,λ) → R∗L,P are known, the proof
Theorem 3.3 also provides learning rates. However, we conjecture that these rates are usually overly conservative in terms of
the estimation error, i.e. the statistical part of the analysis, since for the latter we only employ Markov’s inequality in a very
straightforward fashion. Nonetheless, sharper learning rates seem to be possible for e.g. exponentially β-mixing processes
such as certain Markov chains. However, our experience from the analysis for i.i.d. processes suggests that quite involved
techniques are needed to obtain sharp learning rates (and not only sharp rates for the estimation error). For example, [40]
shows that in order to correctly combine the approximation error with the estimation error a localization argument with
respect to the regularization parameter is needed. Moreover, it is well known that for i.i.d. processes the so-called variance
bounds can drastically improve the learning rates, and such variance bounds typically lead to another localization argument
that uses Talagrand’s inequality. For these reasons we feel that any serious consideration of learning rates is out of the scope
of the paper. Instead we would like to compare our consistency result with the consistency result for regularized boosting
algorithms derived in [41]. To this end we first observe that for (in the wide sense) stationary processes (24) is automatically
satisfied and (25) is equivalent to

1
n

n∑
i=1
α(Z,µ, i) ≤ Cn−α, n ≥ 1,

by (22). Obviously, the latter is satisfied if Z is algebraically ᾱ-mixing with exponent α, i.e. if it satisfies ᾱ(Z,µ, n) ≤ Cn−α for
all n ≥ 1. Consequently, Theorem 3.3 implies consistency results for stationary, algebraically ᾱ-mixing processes for which
we have a bound on the mixing rate. Compared to this [41] only establishes a consistency result for stationary, algebraically
β̄-mixing processes for which we have a bound on the mixing rate. Since in general ᾱ-mixing is strictly weaker assumption
than β̄-mixing we see that Theorem 3.3 substantially weakens the assumptions of [41]. Finally, note that our restriction to
polynomial rates in (24) and (25) is by no means necessary. For example, if we replace n−α by (log n)−α in (24) and (25) then
the corresponding condition on (λn) for the SVM using the hinge loss becomes λ2

n(log n)α → ∞. In particular, note that
such an SVM is consistent for all stationary, algebraically α-mixing processes!3 In this direction it is interesting to recall that
in [12] consistency was established for kernel estimators and algebraically α-mixing, not necessarily stationary processes.
To the best of our knowledge this is the consistency result that is closest in its assumptions on Z to Theorem 3.3.

The proof of Theorem 3.3 is based on a stability argument together with a simple Markov-type concentration inequality
for Hilbert-space-valued random variables. In principle, one could also employ exponential type inequalities for sums of
R-valued random variables in the sense of e.g. [17, Chapter 1.4] together with a skeleton argument based on e.g. covering
numbers. However, some preliminary considerations we made in this direction suggest that at least for a straightforward
approach the resulting conditions on (λn) are substantially stronger. Consequently, we do not discuss such an approach in
further detail.

The next theorem establishes a result similar to Theorem 3.3 for distance-based loss functions of some growth type p:

Theorem 3.4. Let L : R×R→ [0,∞) be a convex distance-based loss function of upper growth type p ∈ [1, 2]. Furthermore, let
X be a separable metric space and H be an (L, P)-rich RKHS over X with bounded continuous kernel k. Moreover, let (Ω,A,µ) be
a probability space, Z := ((Xi, Yi))i≥1 be an X×R-valued, AMS stochastic process on Ω , and P be the asymptotic mean of (Z,µ).
Assume that we have

sup
i≥1
|µ(Xi,Yi)|q <∞ (27)

for some q ∈ [p,∞], where | . |q is the moment defined by (14). Furthermore assume that there are constants C > 0 and
α,β ∈ (0, 1] such that∣∣∣∣∣1n

n∑
i=1
Eµf ◦ Zi − EPf

∣∣∣∣∣ ≤ C‖f‖L1(P) n
−α (28)

3 However, for such (λn) the SVM typically deals too conservatively with the stochastic part of the learning process, so that the approximation behaviour
is poor. As a consequence this result does not seem to have any practical relevance.
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1
n2

n∑
i=1

i−1∑
j=1
α1− 2p−2

q (Z,µ, i, j)ϕ
2p−2

q
sym (Z,µ, i, j) ≤ Cn−β (29)

for all f ∈ L1(P) ∩
⋂
∞

i=1 L1(µ(Xi,Yi)). Then for all null-sequences (λn) of strictly positive real numbers satisfying the conditions

λp
nn

2α
→∞ (30)

λ2p
n nβ →∞ (31)

the corresponding (λn)-SVM based on H and L is L-consistent for Z.

Since distance-based loss functions are typically used for regression problems we see that the above theorem is mainly
interesting for these learning scenarios. For Lipschitz continuous losses such as the absolute distance loss L(y, t) := |y − t|,
the ε-insensitive loss L(y, t) := max{0, |y− t|− ε}, the logistic loss or Huber’s robust loss we obviously have p = 1 and hence
(29) reduces to (25). Moreover, for Lipschitz continuous losses we can choose q = 1 in (27). Consequently, it is easy to see
that all remarks made for the classification SVM using the hinge loss, remain true for regression SVMs using one of the above
losses.

In contrast to this an SVM that uses the standard least squares loss requires p = 2 in the above theorem. For processes
with uniformly bounded noise, i.e. q = ∞, we again see that (29) reduces to (25). Moreover, for q ∈ (2,∞) we have

1
n2

n∑
i=1

i−1∑
j=1
α1− 2

q (Z,µ, i, j)ϕ
2
q
sym(Z,µ, i, j) ≤

(
1
n2

n∑
i=1

i−1∑
j=1
α(Z,µ, i, j)

)1− 2
q

so that (25) implies (29) for β := α(1 − 2/q). However, for q = 2 we have 1 − 2p−2
q
= 0, and consequently we only obtain

consistency results for weakly ϕsym-bi-mixing processes.
Theorem 3.4 generalizes the only known consistency result (see [4]) for regression SVMs dealing with unbounded noise

with respect to both the compactness assumption on X and the i.i.d. assumption on the data-generating process. In particular,
Theorem 3.4 shows that such SVMs are rather robust against violations of these assumptions, and consequently it gives a
strong justification of using such SVMs in rather general situations.

Finally, we would like to mention that condition (27) can be replaced by a weaker assumption describing the average
behaviour of the sequence (|µ(Xi,Yi)|q)i≥1. However, the resulting conditions on (λn) are more complicated and hence we
omit the details.

4. Proofs

4.1. Proofs from Section 2.1

Proof of Lemma 2.3. Let B be the σ-algebra of Z. We write Pn(B) :=
1
n

∑n
i=1 µ(Zi ∈ B) for B ∈ B and n ≥ 1. Then Pn is

obviously a probability measure on B for all n ≥ 1. Now the theorem of Vitali–Hahn–Saks (see e.g. [42, p. 158–160]) ensures
that P(B) := limn→∞ Pn(B), B ∈ B, defines a probability measure on B. �

Proof of Theorem 2.4. Recall that the convergence in probability µ can be described by the metric

d(f , g) :=
∫
Ω

min {1, |f − g|} dµ, f , g ∈ L0(Ω).

Moreover, for measurable B ⊂ Z let cB be the constant satisfying (1). The WLLNE and the above metric then shows

lim
n→∞

∫
Ω

∣∣∣∣∣1n
n∑

i=1
1B ◦ Zi − cB

∣∣∣∣∣ dµ = 0.

Since ‖.‖L1(µ) is continuous on L1(µ) we hence find

lim
n→∞

1
n

n∑
i=1
Eµ1B ◦ Zi = lim

n→∞

∫
Ω

1
n

n∑
i=1

1B ◦ Zidµ = lim
n→∞

∫
Ω

∣∣∣∣∣1n
n∑

i=1
1B ◦ Zi

∣∣∣∣∣ dµ = Eµ|cB| = cB,

where the existence of the right limit implies the existence of the left limit. Consequently, Z is AMS and we have P(B) = cB.
Obviously, the latter together with (1) immediately gives (4). Finally, if Z satisfies the SLLNE then we obtain the almost sure
convergence in (4) from (2). �

Proof of Lemma 2.5. Let us begin by showing the assertion for the SLLNE. To this end we fix an ε > 0. By the approximation
lemma for bounded measurable functions there exists a step function g : X → R with ‖f − g‖∞ ≤ ε. Now, the linearity of
the limit together with the SLLNE shows

EPg = lim
n→∞

1
n

n∑
i=1

g ◦ Zi(ω)
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for µ-almost all ω ∈ Ω , and consequently, [43, Lemma 20.6] gives an n0 ≥ 1 such that

µ

(
sup
n≥n0

∣∣∣∣∣1n
n∑

i=1
g ◦ Zi − EPg

∣∣∣∣∣ ≤ ε
)
≥ 1− ε. (32)

Moreover, for ω ∈ Ω the triangle inequality together with ‖f − g‖∞ ≤ ε yields

sup
n≥n0

∣∣∣∣∣1n
n∑

i=1
f ◦ Zi(ω)− EPf

∣∣∣∣∣ ≤ 2ε+ sup
n≥n0

∣∣∣∣∣1n
n∑

i=1
g ◦ Zi(ω)− EPg

∣∣∣∣∣ ,
and hence we obtain

µ

(
sup
n≥n0

∣∣∣∣∣1n
n∑

i=1
f ◦ Zi − EPf

∣∣∣∣∣ ≤ 3ε
)
≥ 1− ε.

This shows the µ-almost sure convergence in (5). Using that the functions 1
n

∑n
i=1 f ◦ Zi, n ≥ 1, are uniformly bounded

Lebesgue’s theorem then yields

EPf =
∫
Ω

EPf dµ =
∫
Ω

lim
n→∞

1
n

n∑
i=1

f ◦ Zidµ = lim
n→∞

∫
Ω

1
n

n∑
i=1

f ◦ Zidµ = lim
n→∞

1
n

n∑
i=1
Eµf ◦ Zi,

and hence we have found (6). Finally, if Z only satisfies the WLLNE then pulling the supremum out ofµ in (32) and adjusting
the rest of the proof accordingly shows (5) with convergence in probability µ. Moreover, in this case (6) can be shown
analogously to the argument used in the proof Theorem 2.4. �

4.2. Proofs from Section 2.2

Proof of Lemma 2.15. Let us first assume that L is locally bounded. It is then straightforward to check that it suffices to
consider the case n0 = 0. Now observe that the function g(x, y) := L(x, y, f (x)), (x, y) ∈ X × Y, is a bounded, measurable
function since f is assumed to be bounded, and L is locally bounded. Applying Lemma 2.5 to the function g then gives the
assertion.

Let us now assume that L is a P-integrable Nemitski loss. Then there exist a b ∈ L1(P) and an increasing function
h : [0,∞)→ [0,∞) with

g(x, y) ≤ b(x, y)+ h (‖f‖∞) , (x, y) ∈ X × Y.

This shows that g ∈ L1(P), and hence the assertion follows from Definition 2.6. �

4.3. Proofs from Section 2.3

For the proof of Theorem 2.17 we need some preparations. Let us begin with the following result on the existence and
uniqueness of infinite sample SVMs which is a slight extension of similar results established in [44,4]:

Theorem 4.1. Let L : X× Y ×R→ [0,∞) be a convex loss function and P be a distribution on X× Y such that L is a P-integrable
Nemitski loss. Furthermore, let H be a RKHS of a bounded measurable kernel over X. Then for all λ > 0 there exists exactly one
element fP,λ ∈ H such that

λ‖fP,λ‖
2
H +RL,P(fP,λ) = inf

f∈H
λ‖f‖2

H +RL,P(f ). (33)

Furthermore, we have ‖fP,λ‖H ≤
√

RL,P(0)

λ
.

The following two results describe the stability of the empirical SVM solutions. The first result was (essentially) shown
in [44,4]:

Theorem 4.2. Let X be a separable metric space, L : X × Y × R→ [0,∞) be a convex, locally Lipschitz continuous loss function,
and P be a distribution on X× Y with RL,P(0) <∞. Furthermore, let H be the RKHS of a bounded, continuous kernel k over X with
canonical feature map Φ : X→ H. We define

Bλ := ‖k‖∞

(
RL,P(0)

λ

)1/2

, λ > 0.

Then for all λ > 0 there exists a bounded, measurable function hλ : X × Y → R with

‖hλ‖∞ ≤ |L|Bλ,1 (34)
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and ∥∥fP,λ − fT,λ
∥∥
H ≤

1
λ
‖EPhλΦ − EThλΦ‖H (35)

for all training sets T = ((x1, y1), . . . , (xn, yn)) ∈ (X×Y)n, whereET denotes the expectation operator with respect to the empirical
measure associated to T, i.e. ETg :=

1
n

∑n
i=1 g(xi, yi).

Recall that convex distance-based loss functions are in general not locally Lipschitz continuous. Nevertheless SVM using
these losses still enjoy stability as the following result shows:

Theorem 4.3. Let X be a separable metric space, L : R× R→ [0,∞) be a convex, distance-based loss function of upper growth
type p ≥ 1 and P a distribution on X×Rwith |P|q <∞ for some q ∈ [p,∞]. Furthermore, let H be a RKHS of a bounded, continuous
kernel over X with canonical feature map Φ : X → H. Then there exists a constant cL > 0 depending only on L such that for all
λ > 0 there exists a measurable function hλ : X × Y → R with

‖hλ‖Ls(P̄) ≤ 8pcL
(

1+ |P̄|p−1
q + ‖fP,λ‖

p−1
∞

)
(36)

∥∥fP,λ − fT,λ
∥∥
H ≤

1
λ
‖EPhλΦ − EThλΦ‖H (37)

for s := q
p−1 , all distributions P̄ on X×Rwith |P̄|q <∞ and all training sets T ∈ (X× Y)n. Finally, if L is also of lower growth type

p then we additionally have

‖hλ‖Ls(P) ≤ 16pcL
(

1+ |P|p−1
q

) (
1+ ‖fP,λ‖

q−p
s
∞

)
. (38)

Proof. By taking care in the constants in the proof of [4, Theorem 10] we obtain a measurable function hλ : X × Y → R
satisfying (37) and

|hλ(x, y)| ≤ 4p cL max
{

1, |y− fP,λ(x)|
p−1

}
, (x, y) ∈ X × Y,

where cL is a suitable constant depending only on the loss function L. For q = ∞we then easily find the assertion, and hence
let us assume that q ∈ [p,∞). In this case, the above inequality yields

|hλ(x, y)|
s
≤ 4pscsL max

{
1, |y− fP,λ(x)|

q}
≤ 4ps2q−1csL (1+ |y|q + |fP,λ(x)|q) . (39)

Since q−1
s
≤ p and s ≥ 1 we then obtain (36). Moreover, if ψ is the function satisfying L(y, t) = ψ(y− t), y, t ∈ R, we have

EP|fP,λ|
p
≤ 2p−1

∫
X×Y

∣∣y− fP,λ(x)
∣∣p + |y|p dP(x, y)

≤ 2p−1
∫
X×Y

c(1)
L ψ (y− fP,λ(x))+ 1+ |y|p dP(x, y)

= 2p−1
(
c(1)
L RL,P(fP,λ)+ 1+ |P|pp

)
≤ 2p−1

(
c(1)
L RL,P(0)+ 1+ |P|pp

)
≤ 2p−1

(
c(2)
L

(
1+ |P|pp

)
+ 1+ |P|pp

)
≤ 2pc(3)

L

(
1+ |P|pp

)
,

where c(1)
L , c(2)

L ≥ 1, and c(3)
L ≥ 1 are suitable constants depending only on the loss function L. Combining the estimate on

EP|fP,λ|p with (39) then gives

‖hλ‖Ls(P) ≤ 4p 2
q−1
s cL

(
1+ |P|p−1

q + ‖fP,λ‖
q−p
s
∞ (EP|fP,λ|

p)
1
s

)
≤ 4p 2

q−1
s cL

(
1+ |P|p−1

q + ‖fP,λ‖
q−p
s
∞

(
2pc(3)

L (1+ |P|pp)
) 1

s

)

≤ 4p 2
p+q
s

(
c(4)
L

)1+ 1
s
(

1+ |P|
p
s
p + |P|

p−1
q

)(
1+ ‖fP,λ‖

q−p
s
∞

)
,

where c(4)
L ≥ 1 is another suitable constant depending only on the loss function L. Now note that we have p+q

s
=

( p
q
+ 1)(p− 1) ≤ 2(p− 1) and 1+ 1

s
≤ 2. These estimates together with

|P|
p
s
p ≤ |P|

p
s
q = |P|

p(p−1)
q

q ≤ 1+ |P|p−1
q

then yield (38). �
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The next lemma establishes Hilbert-space-valued laws of large numbers which are later used to bound the term
‖EPhλΦ − EThλΦ‖H .

Lemma 4.4. Let (Ω,A,µ) be a probability space, Z be a Polish space, and Z := (Zi)i≥1 be a Z-valued stochastic process on
Ω . Assume that Z satisfies the WLLNE and let P be the asymptotic mean of (Z,µ). Furthermore, let H be a Hilbert space, and
Φ : Z→ H be a continuous and bounded map. Then for all h ∈ L∞(P) we have

lim
n→∞

1
n

n∑
i=1

(hΦ) ◦ Zi = EPhΦ, (40)

where the convergence is in probabilityµ. Moreover, if Z actually satisfies the WLLN then (40) holds for all f ∈ L1(P). Finally, the
convergence holds µ-almost surely for all f ∈ L∞(P) or f ∈ L1(P) if Z satisfies the SLLNE or SLLN, respectively.

Proof. Let us first show (40) for f ∈ L1(P) when Z satisfies the SLLN. To this end we first make the additional assumption
that there exists a compact subset K ⊂ Z with h(z) = 0 for all z 6∈ K. Now recall that Φ is continuous and hence Φ(K) ⊂ H is
compact. Moreover, recall that H as a Hilbert space has the approximation property (see e.g. [45, p. 30ff] for details on this
concept). For a fixed ε > 0 there consequently exists a bounded linear operator S : H→ H with m := rank S <∞ and

‖SΦ(z)− Φ(z)‖H ≤ ε, z ∈ K.

Let e1, . . . , em be an ONB of the image SH of H under S. Since 〈ej, SΦ〉 : Z→ R, j = 1, . . . ,m, are bounded measurable functions
we then find that

〈ej, hSΦ〉 = h〈ej, SΦ〉, j = 1, . . . ,m,

are P-integrable. Consequently, they satisfy the limit relation (8), and by a well-known reformulation of almost sure
convergence (see e.g. [43, Lem. 20.6]) hence there exists an nε such that with probability not less than 1− εwe have both

sup
n≥nε

sup
j=1,...,m

∣∣∣∣∣1n
n∑

i=1

〈
ej, hSΦ

〉
◦ Zi(ω)− EP〈ej, hSΦ〉

∣∣∣∣∣ ≤ εm−1/2

and

sup
n≥nε

∣∣∣∣∣1n
n∑

i=1
|h| ◦ Zi(ω)− EP|h|

∣∣∣∣∣ ≤ ε.
Let us fix an n ≥ nε and an ω ∈ Ω which satisfy these two inequalities. Using h(z) = 0 for all z ∈ Z \ K we then have∥∥∥∥∥1

n

n∑
i=1

(hΦ) ◦ Zi(ω)−
1
n

n∑
i=1

(hSΦ) ◦ Zi(ω)

∥∥∥∥∥
H

≤
1
n

n∑
i=1
|h| ◦ Zi(ω) · ‖Φ ◦ Zi(ω)− SΦ ◦ Zi(ω)‖H

≤
ε

n

n∑
i=1
|h| ◦ Zi(ω)

≤ ε (ε+ EP|h|)

≤ ε+ εEP|h|.

Moreover, n and ω also satisfy∥∥∥∥∥1
n

n∑
i=1

(hSΦ) ◦ Zi(ω)− EPhSΦ

∥∥∥∥∥
H

=

 m∑
j=1

∣∣∣∣∣
〈
ej,

1
n

n∑
i=1

(hSΦ) ◦ Zi(ω)− EPhSΦ

〉∣∣∣∣∣
2
1/2

≤
√
m sup

j=1,...,m

∣∣∣∣∣1n
n∑

i=1

〈
ej, hSΦ

〉
◦ Zi(ω)− EP〈ej, hSΦ〉

∣∣∣∣∣
≤ ε.

In addition, h(z) = 0 for all z ∈ Z \ K implies

‖EPhSΦ − EPhΦ‖H ≤
∫
K
|h(z)| · ‖SΦ(z)− Φ(z)‖H dP(z) ≤ εEP|h|,

and consequently we can conclude∥∥∥∥∥1
n

n∑
i=1

(hΦ) ◦ Zi(ω)− EPhΦ

∥∥∥∥∥
H

≤

∥∥∥∥∥1
n

n∑
i=1

(hΦ) ◦ Zi(ω)−
1
n

n∑
i=1

(hSΦ) ◦ Zi(ω)

∥∥∥∥∥
H

+

∥∥∥∥∥1
n

n∑
i=1

(hSΦ) ◦ Zi(ω)− EPhSΦ

∥∥∥∥∥
H

+ ‖EPhSΦ − EPhΦ‖H

≤ 2ε (1+ EP|h|) .
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This shows

µ

({
ω ∈ Ω : sup

n≥nε

∥∥∥∥∥1
n

n∑
i=1

(hΦ) ◦ Zi(ω)− EPhΦ

∥∥∥∥∥
H

≤ 2ε (1+ EP|h|)

})
≥ 1− ε,

and hence [43, Lemma 20.6] yields the assertion for our special case.
Let us now prove the assertion for general h ∈ L1(P). To this end we may assume without loss of generality that ‖Φ(z)‖ ≤ 1

for all z ∈ Z. Let us fix an ε > 0. Since Z is Polish the measures P and |h|P are regular and hence there then exists a compact
subset K ⊂ Z with

P(Z \ K) ≤ ε and
∫
Z\K
|h| dP ≤ ε.

Now g := 1Kh is a P-integrable function that vanishes outside the compact set K. Our preliminary considerations and the
SLLN consequently show that there exists an nε ≥ 1 such that with probability not less than 1− εwe have both

sup
n≥nε

∥∥∥∥∥1
n

n∑
i=1

(gΦ) ◦ Zi(ω)− EPgΦ

∥∥∥∥∥
H

≤ ε

and

sup
n≥nε

∣∣∣∣∣1n
n∑

i=1

(
1Z\K |h|

)
◦ Zi(ω)− EP1Z\K |h|

∣∣∣∣∣ ≤ ε.
Let us fix an n ≥ nε and an ω ∈ Ω which satisfy these two inequalities. Using h− g = 1Z\Kh and ‖Φ(z)‖ ≤ 1 for all z ∈ Z we
then obtain∥∥∥∥∥1

n

n∑
i=1

(hΦ) ◦ Zi(ω)− EPhΦ

∥∥∥∥∥
H

≤

∥∥∥∥∥1
n

n∑
i=1

(hΦ) ◦ Zi(ω)−
1
n

n∑
i=1

(gΦ) ◦ Zi(ω)

∥∥∥∥∥
H

+

∥∥∥∥∥1
n

n∑
i=1

(gΦ) ◦ Zi(ω)− EPgΦ

∥∥∥∥∥
H

+ ‖EPgΦ − EPhΦ‖H

≤
1
n

n∑
i=1

(
1Z\K |h|

)
◦ Zi(ω)+ ε+ EP1Z\K |h|

≤ ε+ EP1Z\K |h| + ε+ EP1Z\K |h|

≤ 4ε.

Therefore we obtain

µ

({
ω ∈ Ω : sup

n≥nε

∥∥∥∥∥1
n

n∑
i=1

(hΦ) ◦ Zi(ω)− EPhΦ

∥∥∥∥∥
H

≤ 4ε
})
≥ 1− ε,

and hence we obtain the assertion by another application of [43, Lemma 20.6].
Finally, if Z only satisfies the WLLN then we obtain the assertion by omitting the terms supn≥nε in the above

proof. Moreover, for processes satisfying only a law of large numbers for events we have to use Lemma 2.5 instead of
Definition 2.6. �

In order to prove Theorem 2.17 we finally need the following technical lemma:

Lemma 4.5. Let F : (0,∞) × N → [0,∞) be a function with limn→∞ F(λ, n) = 0 for all λ > 0. Then there exists a sequence
(λn) ⊂ (0, 1] with

lim
n→∞

λn = 0

and

lim
n→∞

F(λn, n) = 0.

Proof. For k ≥ 1 there exists an nk ≥ 1 such that for all n ≥ nk we have

F(k−1, n) < k−1. (41)

Obviously, we may assume without loss of generality that nk < nk+1 for all k ≥ 1. For n ≥ 1 we write

λn :=

{
1 if 1 ≤ n < n1
k−1 if nk ≤ n < nk+1.

Now let ε > 0. Then there exists an integer k ≥ 1 with k−1
≤ ε. Let us fix an n ≥ nk. Then there exists an i ≥ k with
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ni ≤ n < ni+1, and consequently we have λn = i−1. This gives

λn = i−1
≤ k−1

≤ ε,

and since (41) together with ni ≤ n yields F(i−1, n) ≤ i−1 we also find

F(λn, n) = F(i−1, n) ≤ i−1
≤ ε.

These estimates show the assertion. �

Proof of Theorem 2.17. We only show the assertion in the case of Z satisfying the SLLNE. Since L is locally bounded, the
function L(., ., 0) is bounded and hence we may assume without loss of generality that RL,Q(0) ≤ 1 for all distributions Q
on X × Y. Let us fix a distribution Q on X × Y and a λ > 0. Since fQ,λ is a minimizer of the regularized risk defined by Q we
then have

λ‖fQ,λ‖
2
H ≤ λ‖fQ,λ‖

2
H +RL,Q(fQ,λ) ≤ RL,Q(0) ≤ 1

and hence we conclude ‖fQ,λ‖H ≤ λ
−1/2 for all distributions Q on X × Y and all λ > 0. Moreover, we may assume without

loss of generality that ‖k‖∞ ≤ 1, so that we have ‖f‖∞ ≤ ‖f‖H for all f ∈ H. Now, let us fix an ε > 0. Since a simple argument
shows that limλ→0 RL,P(fP,λ) = R∗L,P,H = R∗L,P we then find∣∣∣RL,P(fTn(ω),λ)−R∗L,P

∣∣∣ ≤ ∣∣RL,P(fTn(ω),λ)−RL,P(fP,λ)
∣∣+ ∣∣∣RL,P(fP,λ)−R∗L,P

∣∣∣
≤ |L|λ−1/2,1‖fTn(ω),λ − fP,λ‖∞ + ε

≤
|L|λ−1/2,1

λ

∥∥ETn(ω)hλΦ − EPhλΦ
∥∥
H + ε

for all n ≥ 1, ω ∈ Ω , and all sufficiently small λ > 0, where hλ : X × Y → R is the function according to Theorem 4.2,
and ETn(ω) denotes the expectation operator with respect to the empirical distribution associated to the training set Tn(ω) =
((X1(ω), Y1(ω)), . . . , (Xn(ω), Yn(ω))), i.e. ETn(ω)g =

1
n

∑n
i=1 g(Xi(ω), Yi(ω)). Furthermore, for all λ ∈ (0, ε] and n ≥ 1 we have

µ

({
ω ∈ Ω : sup

m≥n

|L|λ−1/2,1

λ

∥∥ETm(ω)hλΦ − EPhλΦ
∥∥
H ≥ ε

})

≤ µ

({
ω ∈ Ω : sup

m≥n

∥∥ETm(ω)hλΦ − EPhλΦ
∥∥
H ≥

λ2

|L|λ−1/2,1

})
=: F(λ, n).

Moreover, by Theorem 4.2 we know that hλ is a bounded function for all λ > 0 and consequently, Lemma 4.4 yields
limn→∞ F(λ, n) = 0 for all λ ∈ (0, ε]. Now Lemma 4.5 shows that there exists a sequence (λn) with λn → 0 and F(λn, n)→ 0.
For fixed δ > 0 there consequently exists an n0 ≥ 1 such that for all n ≥ n0 we have |RL,P(fP,λn) −R∗L,P| ≤ ε, λn ≤ ε, and
F(λn, n) ≤ δ. For such n our previous considerations then show

µ

({
ω ∈ Ω : sup

m≥n

∣∣∣RL,P(fTm(ω),λm)−R∗L,P

∣∣∣ ≥ 2ε
})

≤ µ

({
ω ∈ Ω : sup

m≥n

|L|
λ
−1/2
m ,1

λm

∥∥ETm(ω)hλmΦ − EPhλmΦ
∥∥
H ≥ ε

})
≤ F(λn, n)

≤ δ.

This shows the assertion. �

Proof of Theorem 2.18. Again, we only show the assertion in the case of Z satisfying the SLLN. Obviously, we may assume
without loss of generality that ‖k‖∞ ≤ 1, so that we have ‖f‖∞ ≤ ‖f‖H for all f ∈ H. Moreover, since |P|p < ∞ we
may additionally assume without loss of generality that both |P|p ≤ 1 and RL,P(0) ≤ 1. Note that the latter assumption
immediately yields

‖fP,λ‖H ≤ λ
−1/2

for all λ > 0. Let ψ : R → [0,∞) be the function satisfying L(y, t) = ψ(y − t), y, t ∈ R. The assumption |P|p < ∞ then
guarantees ψ ∈ L1(P) and hence the SLLN shows

lim
n→∞

RL,Tn(ω)(0) = lim
n→∞

ETn(ω)ψ = EPψ = RL,P(0) (42)

forµ-almost allω ∈ Ω . Moreover, we have λ‖fTn(ω),λ‖
2
H ≤ RL,Tn(ω)(0) for all n ≥ 1, λ > 0, andω ∈ Ω . Consequently the “local

Lipschitz continuity” of the L-risk which follows from (13) as shown in [4, Lemma 20] together with Theorem 4.3 yields
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∣∣RL,P(fTn(ω),λ)−RL,P(fP,λ)
∣∣ ≤ cp

(
|P|p−1

p−1 + ‖fTn(ω),λ‖
p−1
∞
+ ‖fP,λ‖

p−1
∞
+ 1

)
‖fTn(ω),λ − fP,λ‖∞

≤
cp
λ

2+
(

RL,Tn(ω)(0)

λ

) p−1
2
+ λ−

p−1
2

 ‖ETn(ω)hλΦ − EPhλΦ‖H

for all n ≥ 1, λ > 0, and ω ∈ Ω . Let us fix an ε > 0. For λ ∈ (0, ε] and n ≥ 1 we then obtain

µ

({
ω ∈ Ω : sup

m≥n

∣∣RL,P(fTm(ω),λ)−RL,P(fP,λ)
∣∣ ≥ ε})

≤ µ

ω ∈ Ω : sup
m≥n

2+
(

RL,Tm(ω)(0)

λ

) p−1
2
+ λ−

p−1
2

 ‖ETm(ω)hλΦ − EPhλΦ‖H ≥
λ2

cp




=: F(λ, n).

Moreover, Theorem 4.3 ensures hλ ∈ L1(P) for all λ > 0 and hence Lemma 4.4 together with (42) shows that
limn→∞ F(λ, n) = 0 for all λ ∈ (0, ε]. Now the rest of the proof is analogous to the proof of Theorem 2.17. �

4.4. Proofs from Section 3.1

Proof of Proposition 3.2. Obviously, it suffices to show that being AMS implies the WLLNE. To this end let P be the stationary
mean of (Z,µ). Then there exists an n0 ≥ 1 such that∣∣∣∣∣1n

n∑
i=1
Eµ1B ◦ Zi − P(B)

∣∣∣∣∣ < ε

2
, n ≥ n0,

and hence Markov’s inequality yields

µ

({
ω ∈ Ω :

∣∣∣∣∣1n
n∑

i=1
1B ◦ Zi(ω)− P(B)

∣∣∣∣∣ ≥ ε
})

≤ µ

({
ω ∈ Ω :

∣∣∣∣∣1n
n∑

i=1
1B ◦ Zi(ω)−

1
n

n∑
i=1
Eµ1B ◦ Zi

∣∣∣∣∣ ≥ ε2
})

≤ 4ε−2n−2Eµ

(
n∑

i=1

(
1B ◦ Zi − Eµ1B ◦ Zi

))2

for all n ≥ n0. Let us write hi := 1B ◦ Zi − Eµ1B ◦ Zi, i ≥ 1. Then we have Eµhi = 0 and hi(ω) ∈ [−1, 1] for all i ≥ 1 and all
ω ∈ Ω . Consequently, (20) gives RR

∞
(Z,µ, i, j) ≤ 2πα(Z,µ, i, j), i, j ≥ 1, and hence we obtain

Eµ

(
n∑

i=1

(
1B ◦ Zi − Eµ1B ◦ Zi

))2

= Eµ
n∑

i=1
h2
i + 2Eµ

n∑
i=1

i−1∑
j=1

hihj ≤ n+ 4π
n∑

i=1

i−1∑
j=1
α(Z,µ, i, j).

Combining the estimates then yields the assertion. �

4.5. Proofs from Section 3.2

Proof of Theorem 3.3. Let B be the σ-algebra of Z. We write Pn(B) :=
1
n

∑n
i=1 µ(Zi ∈ B) for B ∈ B and n ≥ 1. Then Pn is

obviously a probability measure on B for all n ≥ 1. Let us first show that

lim
n→∞

RL,P(fPn,λn) = R∗L,P. (43)

To this end we first observe that the assumption (24) yields

RL,P(fPn,λn) ≤ λn‖fPn,λn‖
2
H +RL,Pn(fPn,λn)+ C‖L ◦ fPn,λn‖∞n−α

≤ λn‖fP,λn‖
2
H +RL,Pn(fP,λn)+ C‖L ◦ fPn,λn‖∞n−α

≤ λn‖fP,λn‖
2
H +RL,P(fP,λn)+ Cn−α (‖L ◦ fP,λn‖∞ + ‖L ◦ fPn,λn‖∞) (44)

for all n ≥ 1. Now R∗L,P,H = R∗L,P together with λn → 0 yields λn‖fP,λn‖
2
H+RL,P(fP,λn)→ R∗L,P . Moreover, for every distribution

Q on Z we have

‖L ◦ fQ,λ‖∞ ≤ c+ |L|‖fQ,λ‖∞,1‖fQ,λ‖∞ ≤ c+ |L|Bλ,1Bλ

by (11) and Theorem 4.1. In addition, (|L|Bλn ,1) is a non-decreasing sequence and the sequence (Bλn) is dominated by the
sequence (λ

−1/2
n ). Consequently, (26) implies n−α|L|Bλn ,1Bλn → 0 and hence we find (43). Let us now fix an ε > 0. Then

Theorem 4.2 and Markov’s inequality yield
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µ
({
ω ∈ Ω :

∣∣RL,P(fTn(ω),λn)−RL,P(fPn,λn)
∣∣ ≥ ε})

≤ µ
({
ω ∈ Ω : |L|Bλn ,1 ‖fTn(ω),λn − fPn,λn‖∞ ≥ ε

})
≤ µ

({
ω ∈ Ω : ‖k‖∞|L|Bλn ,1

∥∥ETn(ω)hnΦ − EPnhnΦ
∥∥
H ≥ ελn

})
≤
‖k‖2
∞
|L|2Bλn ,1

ε2λ2
n

Eω∼µ
∥∥ETn(ω)hnΦ − EPnhnΦ

∥∥2
H

where hn is the function according to Theorem 4.2 for the distribution Pn and the regularization parameter λn. Let us define

gn,i := (hnΦ) ◦ (Xi, Yi)− Eµ(hnΦ) ◦ (Xi, Yi)

for n ≥ 1 and i = 1, . . . , n. Then we have Eµgn,i = 0 and Theorem 4.2 yields

‖gn,i‖∞ ≤ 2 sup
ω∈Ω
‖(hnΦ) ◦ (Xi, Yi)(ω)‖H ≤ 2 ‖hn‖∞ ‖k‖∞ ≤ 2 ‖k‖∞|L|Bλn ,1.

Consequently, (20) and (19) show that there exists a universal constant c ≥ 1 such that

Eω∼µ
∥∥ETn(ω)hnΦ − EPnhnΦ

∥∥2
H = n−2 Eω∼µ

∥∥∥∥∥ n∑
i=1

(hnΦ) ◦ (Xi, Yi)(ω)− Eµ(hnΦ) ◦ (Xi, Yi)

∥∥∥∥∥
2

H

= n−2
n∑

i=1
Eµ〈gn,i, gn,i〉 + 2n−2

n∑
i=1

i−1∑
j=1
Eµ〈gn,i, gn,j〉

≤ n−2
n∑

i=1
‖gn,i‖

2
∞
+ 2n−2

n∑
i=1

i−1∑
j=1

RH
∞

(Z,µ, i, j)‖gn,i‖∞‖gn,j‖∞

≤ 4n−1
‖k‖2
∞
|L|2Bλn ,1 + c ‖k‖2

∞
|L|2Bλn ,1n

−2
n∑

i=1

i−1∑
j=1
α(Z,µ, i, j)

for all n ≥ 1. By combining all estimates and using (26) we then obtain the assertion. �

Proof of Theorem 3.4. Without loss of generality we assume that ‖k‖∞ ≤ 1 and |µ(Xi,Yi)|q ≤ 1 for all i ≥ 1. In addition, we
can obviously, also assume that λn ∈ (0, 1] for all n ≥ 1. Now, we define Pn(B) :=

1
n

∑n
i=1 µ(Zi ∈ B) for measurable B ⊂ X×R

and n ≥ 1. For r ∈ [1, q] a simple calculation then shows

|Pn|
r
r =

∫
X×R
|y|rdPn(x, y) =

1
n

n∑
i=1

∫
X×R
|y|rdµ(Xi,Yi)(x, y) =

1
n

n∑
i=1
|µ(Xi,Yi)|

r
r ≤ 1. (45)

Moreover, [43, Thm. 23.8] together with Fatou’s lemma yields

|P|rr =
∫
∞

0
P ({(x, y) ∈ X × R : |y|r ≥ t}) dt =

∫
∞

0
lim
n→∞

1
n

n∑
i=1
µ ({ω ∈ Ω : |Yi(ω)|r ≥ t}) dt

≤ lim inf
n→∞

∫
∞

0

1
n

n∑
i=1
µ ({ω ∈ Ω : |Yi(ω)|r ≥ t}) dt

≤ lim inf
n→∞

1
n

n∑
i=1
|µ(Xi,Yi)|

r
r

≤ 1.

Having finished these preparations we can now begin with the actual proof. To this end first observe that we obtain

RL,P(fPn,λn) ≤ λn‖fP,λn‖
2
H +RL,P(fP,λn)+ Cn−α

(
‖L ◦ fP,λn‖L1(P) + ‖L ◦ fPn,λn‖L1(P)

)
as in (44). Moreover, we obviously have ‖L ◦ fP,λn‖L1(P) = RL,P(fP,λn) ≤ RL,P(0) ≤ c for some constant c independent of n. In
addition, (45) yields

‖L ◦ fPn,λn‖L1(P) =

∫
X×Y

ψ (y− fPn,λn(x)) dP(x, y)

≤ c̃p

∫
X×Y

1+ |y|p + |fPn,λn(x)|
pdP(x, y)

≤ 2c̃p + c̃p‖fPn,λn‖
p
∞

≤ 2c̃p + c̃p‖k‖
p
∞

(
RL,Pn(0)

λn

) p
2

≤ 2cp + cpλ
−

p
2

n ,
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where c̃p and cp are constants only depending on L and p. Combining these estimates with limλ→0 RL,P(fP,λ) = R∗L,P,H = R∗L,P
and (30) we then obtain limn→∞RL,P(fPn,λn) = R∗L,P .

Now let us assume that we have an ω ∈ Ω and an n ≥ 1 with ‖fTn(ω),λn − fPn,λn‖H ≤ 1. For p > 1 the “local Lipschitz
continuity” of the L-risk which follows from (13) as shown in [4, Lemma 20] together with λn ≤ 1 then yields∣∣RL,P(fPn,λn)−RL,P(fTn(ω),λn)

∣∣ ≤ Cp

(
|P|p−1

p−1 + ‖fPn,λn‖
p−1
∞
+ ‖fTn(ω),λn‖

p−1
∞
+ 1

)
‖fPn,λn − fTn(ω),λn‖∞

≤ Cp

(
2+ 2‖fPn,λn‖

p−1
∞
+ ‖fTn(ω),λn − fPn,λn‖

p−1
∞

)
‖fPn,λn − fTn(ω),λn‖H

≤ Cp

3+ 2
(

RL,Pn(0)

λn

) p−1
2

 ‖fPn,λn − fTn(ω),λn‖H

≤ C̄p λ
−

p−1
2

n ‖fPn,λn − fTn(ω),λn‖H

≤ C̄p λ
−

p+1
2

n

∥∥ETn(ω)hnΦ − EPnhnΦ
∥∥
H ,

where Cp ≥ 1 and C̄p ≥ 1 are constants only depending on p and L, and hn is the function according to Theorem 4.2 for the
distribution Pn and the regularization parameter λn. Moreover, for p = 1 we see that L is Lipschitz continuous by [4, Lemma
4] and hence the above estimate is also true in this case. Let us now define

gn,i := (hnΦ) ◦ (Xi, Yi)− Eµ(hnΦ) ◦ (Xi, Yi)

for n ≥ 1 and i = 1, . . . , n. Then we have Eµgn,i = 0 and for s := q
p−1 we find

‖gn,i‖Ls(µ) ≤ 2‖hn‖Ls(µ(Xi,Yi)
) ≤ 128cL

(
1+ |µ(Xi,Yi)|

p−1
q + ‖fPn,λn‖

p−1
∞

)
≤ 128cL

2+
(

RL,Pn(0)

λn

) p−1
2


≤ CL,p λ

−
p−1

2
n ,

where CL,p > 0 is a constant only depending on L and p. For δ > 0 Markov’s inequality together with s ≥ 2, (20) and (19) thus
yields

µ
({
ω ∈ Ω :

∥∥ETn(ω)hnΦ − EPnhnΦ
∥∥
H ≥ δ

})
≤

1
δ2n2

(
n∑

i=1
Eµ〈gn,i, gn,i〉 + 2

n∑
i=1

i−1∑
j=1
Eµ〈gn,i, gn,j〉

)

≤
1
δ2n2

(
n∑

i=1
‖gn,i‖

2
Ls(µ) + 2

n∑
i=1

i−1∑
j=1

RH
s (Z,µ, i, j)‖gn,i‖Ls(µ)‖gn,j‖Ls(µ)

)

≤
C̄L,p

δ2λ
p−1
n n
+

C̄L,p

δ2λ
p−1
n n2

n∑
i=1

i−1∑
j=1
α1− 2p−2

q (Z,µ, i, j)ϕ
2p−2

q
sym (Z,µ, i, j)

≤
(1+ C)C̄L,p

δ2λ
p−1
n nβ

,

where C̄L,p > 0 is another constant only depending on L and p. Let us now fix an ε ∈ (0, 1]. For ω ∈ Ω and n ≥ 1 with

∥∥ETn(ω)hnΦ − EPnhnΦ
∥∥
H <

ελ
(p+1)/2
n

C̄p

we then have ‖fTn(ω),λn − fPn,λn‖H < ελ
(p−1)/2
n
C̄p
≤ 1, and consequently we can conclude

µ
({
ω ∈ Ω :

∣∣RL,P(fPn,λn)−RL,P(fTn(ω),λn)
∣∣ < ε

})
≥ µ

({
ω ∈ Ω :

∥∥ETn(ω)hnΦ − EPnhnΦ
∥∥
H <

ελ
(p+1)/2
n

C̄p

})

≥ 1−
(1+ C)C̄L,pC̄2

p

ε2λ
2p
n nβ

.

Using (31) then yields the assertion. �
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